物理学的进化

物理学的进化

(5)

再举一个例。试取一根米尺,这意味着它静止在一个坐标系中时长为1米。现在让它作匀速直线运动,在代表坐标系的杆上滑过。它的长度还会是1米吗?我们必须预先知道怎样去决定它的长度。当杆是静止的时候,它的两端跟坐标系上相隔1米的两个刻度重合。由此我们断定:静止杆的长度等于1米。当尺在运动时,我们又怎样测量它的长度呢?这可以用下面的方法进行。在给定时刻,两个观察者同时拍快照,一个拍运动的尺的始端,一个拍末端。由于照片是同时摄取的,我们可以把尺的始端和末端跟坐标系重合的那个刻度比较。用这种办法我们就可以测量它的长度。两个观察者必须在给定坐标系的不同部位观察同时产生的现象,我们没有任何理由认为这样的测量结果会跟尺在静止时的结果相同。因为照片必须是同时摄取的,所谓同时,我们已经知道是与坐标系有关的一个相对的概念,因此在互作相对运动的不同坐标系中,这种测量似乎很可能得出不同的结果。
我们不难想象,如果改变的规律对所有的惯性坐标系都是相同的,那么不仅运动的钟会改变它的步调,一根运动的尺也会改变它的长度。
我们只讨论了几种新的可能性,但都没有作出认定这些可能性的任何证明。
我们记得在所有的惯性坐标系中,光速都是一样的。这一情况跟经典转换是不相符的。闷葫芦必须在某处打开,难道就在这里吗?我们难道不能假定运动钟的步调和运动杆的长度会改变,而由这些假定便直接推出光速的不变性吗?我们是能够的!这就是相对论和经典物理学根本不同的第一个例子。我们的论证可以倒过来说:假如光速在所有的坐标系中都是一样的,则运动的杆必须改变其长度,运动的钟必须改变其步调,那么掌握这些改变的定律就都严格地确定出来了。
这一切都没有什么神秘和不合理的地方。在经典物理学中总是假定运动的钟和静止的钟都有相同的步调,假定运动的杆和静止的杆都有相同的长度。假如在所有的坐标系中光速都是相等的,假如相对论是有效的,那么我们必须牺牲经典的这个假定。这些根深蒂固的偏见是很难除掉的,但是除此以外别无办法。从相对论的观点看来,旧概念似乎是很武断的。为什么要像前几页中所说的那样,相信绝对时间对于所有的坐标系中的一切观察者都是以同样的方式流逝的呢?为什么要相信距离是不可能变的呢?时间是由钟来决定的,空间坐标是由杆来决定的,而决定的结果很可能与钟及杆在运动时的行为有关。我们没有理由相信它们的行为会依照我们所希望的方式来做。通过电磁场现象的观察间接地指出,一个运动的钟会改变它的步调,一根运动的杆会改变它的长度,而在力学现象中我们不会想到有这种情况发生的。我们必须在每个坐标系中接受相对时间的概念,因为这是解决困难最好的出路。从相对论中发展出来的其他科学成就表明,不应当把这个新的概念看作是不得已才接受的东西,因为这个理论的功绩是非常显著的。
到目前为止,我们只是力求说明什么东西使我们作出相对论的基本假设,以及相对论如何迫使我们重新研究和修改经典转换,并用新的概念来对待时间和空间。我们的目的是要指出那作为新的物理学和哲学观点的基础观念。这些观念都是简单的,但是在这里已经提出的形式中,它们还不足以得出任何结论,不仅定量的结论得不到,便是定性的结论也得不到。我们必须再用那些只解释主要观念,而把其他的一些观念不加证明便提出来的老方法。
为了弄清楚相信经典转换的古代物理学家(下面称之为古)和相信相对论的现代物理学家(称之为今)在观点上的区别,我们设想他们作了下面的对话:
古:我相信力学中的伽利略相对性原理,因为我知道在两个相对作匀速直线运动的坐标系中,力学定律是相同的。或者换句话说,按照经典转换,这些定律是不变的。
今:但是相对性原理必须应用于我们外界的一切现象。在相对作匀速直线运动的坐标系中,不仅力学定律相同,所有的自然定律都必须是相同的。
古:但是在相对运动的坐标系中,所有的自然定律怎么能相同呢?场方程(即麦克斯韦方程)对于经典转换不是不变的。这是由光速的例子中可以明白看出来的。依照经典转换,这个速度在两个相对运动的坐标系中并不是一样的。
今:这只表明经典转换是不能应用的,表明这两个坐标系之间必须有一种与经典转换不同的关系,而我们不能像这个转换定律中所作的那样,把不同坐标系中的坐标和速度联系起来。我们必须代之以新的定律,并从相对论的基本假设中把它们推出来。我们暂且不管这个新转换定律的数学表述,只要知道它与经典转换不同就够了。我们把它称为洛伦兹转换。可以证明,麦克斯韦方程组(即场的定律)对于洛伦兹转换是不变的,正如力学定律对于经典转换是不变的。我们来回忆一下经典物理学中的情况,坐标有坐标的转换定律,速度也有速度的转换定律,但是两个相对作匀速直线运动的坐标系中的力学定律却是相同的。空间有空间的转换定律,但是时间却没有转换定律,因为时间在所有的坐标系中都是相同的。可是在相对论中却不同了,对于空间、时间和速度都有跟经典转换不同的转换定律。但是自然定律在所有相对作匀速直线运动的坐标系中又必须是相同的。自然定律必须是不变的,但不是像前面那样对于经典转换,而是对于新型的转换,即所谓洛伦兹转换是不变的。自然定律在所有的惯性坐标系中都是同样有效的,而且从一个坐标系转换到另一个坐标系是用洛伦兹转换来实现的。
古:我相信你的话,但我很想知道经典转换和洛伦兹转换的差别。
今:你的问题最好按照下面的方式来答复。你且说出一些经典转换的特色,然后让我来解释一下它们是否已保存在洛伦兹转换中,倘若没有,再来解释它们为什么被改变掉了。
古:假如在我的坐标系中有一个事件发生于某一地点、某一时刻,则在另一个相对于我的坐标系作匀速直线运动的坐标系中的观察者,对于这个事件发生的位置会选用不同的数,但是时间当然还是相同的。在所有的坐标系中我们只用同一个钟,因此与钟是否运动毫无关系。在你看来也是对的吗?
今:不,不对的。每个坐标系必须配备有专用的钟,这个钟必须是静止的,因为运动会改变钟的步调。在两个不同坐标系中的两个观察者,不仅会用不同的数来确定位置,而且也会用不同的数来确定这个事件所发生的时刻。
古:这表示时间不再是不变的。在经典转换中,所有坐标系中的时间总是相同的。在洛伦兹转换中,时间是变化的,并且变得和经典转换中的坐标有点相似。我奇怪,对于长度又能怎样呢?根据经典转换,一根坚硬的杆无论在静止中或运动中都保持它的长度不变。现在这还对吗?
今:不对了。根据洛伦兹转换,一根运动的杆在运动的方向上会收缩,而且假如速率增加,收缩也会增加。一根杆运动得愈快,便显得愈短。但是这种收缩只发生在运动的方向上。在图56上你可以看到一根杆当它运动的速度接近于光速的90%时,它的长度会缩到原来的50%。但在垂直于运动的方向上却没有收缩(图57)。
古:这表示一个运动钟的步调和一根运动杆的长度都与速度有关,但关系怎样呢?
今:速度愈增加,这种改变便愈明显。根据洛伦兹转换,假如一根杆的速度等于光速,则它的长度会整个缩完。同样,一个运动的钟的步调比它所沿着经过的杆上的钟的步调会逐渐慢下来,如果它以光速运动,那么它就会完全停止。
古:这似乎跟我们所有的经验都不相符。我们知道一辆汽车不会在运动的时候就短一些。我们也知道汽车司机常常可以拿他的“好”的钟和他所经过的路上的钟加以比较,而发现它们总是完全一致的。这就跟你的说法不同了。
今:这一点当然是对的,但是力学中所有这些速度比起光速来都小得很,因此把相对论应用到这些现象上去是荒谬的。每个司机即使把速率增加几十万倍,也还能泰然地应用经典物理学。只有当速度接近光速时,才能期望实验与经典转换之间有不相符的地方。只有在速度很大时才能检验洛伦兹转换的有效性。
古:但是还有另外一个困难问题。根据力学,我可以想象物体的速度甚至比光速更大。一个物体相对于流动的船以光速运动,则它相对于岸的速度应当比光速更大。一根杆当它的速度等于光速时,它的长度便整个缩完,这样,便会遇到什么情况呢?如果杆的速度大于光速,我们不能期望有一种负的长度。
今:你实在没有理由作这样的讽刺!根据相对论的观点,一个物体不可能有比光速更大的速度,光速是所有物体所能具有的速度的最大限度。如果一个物体相对于船的速率等于光的速率,那么它相对于岸的速率也等于光的速率。将速度加上或减去的简单的力学定律在这里不再适用了,或者更确切地说,它对小的速度若不求精确还是可用的,但是对于接近光速的速度就不能应用。表示光速的数明显地出现在洛伦兹转换中,并且如同经典力学中的无限大速度那样,光速将成为一个极限速度。这个更为普遍的理论与经典转换和经典力学并不矛盾。反过来说,当速度在非常小的极限情况下,我们又回到旧概念上来了。从新理论的观点上可以明白地看出,经典物理学在哪些情况中是有效的,在哪些地方是受到限制的。在汽车、轮船和火车一类的运动中应用相对论,正像只用乘法表便可以解决的问题却应用了计算机一样觉得可笑。
相对论与力学
相对论的兴起是由于实际需要,是由于旧理论中的矛盾非常严重和深刻,而看来旧理论对这些矛盾已经没法避免了。新理论的好处在于它解决这些困难时,很一致,很简单,只应用了很少几个令人信服的假定。
虽然这些理论是从场的问题上兴起的,但它已概括了所有的物理定律。这里似乎发生了一个困难。场的定律属于一方面,力学定律属于另一方面,这是两种完全不同的类型。电磁场方程对于洛伦兹转换是不变的,而力学方程对于经典转换是不变的。但是相对论要求所有的自然定律都必须对于洛伦兹转换不变,不是对于经典转换不变。后者只是两个坐标系的相对速度为很小时的特殊的极限情况。假使如此,经典力学必须加以改变,这样才能和对于洛伦兹转换的不变性的要求相一致。或者换句话说,经典力学在速度接近光速时就不再适用了。从一个坐标系转换到另一个坐标系,只存在一种转换,即洛伦兹转换。
把经典力学改造成既不与相对论相矛盾,又不与已经观察到的以及已经由经典力学解释出来的大量资料相矛盾,就便于应用了。旧力学将只适用于小的速度,而成为新力学中的特殊情况。
考察一下相对论引起经典力学中改变的一些例子是很重要的,这也许能使我们得到某些可用实验证明或推翻的结论。
假设一个具有一定质量的物体沿着直线在运动,并且沿运动方向受一外力作用。我们知道力是跟速度的改变成正比的,或者更具体些说,一个物体在1秒钟内无论速度从100米每秒增加到101米每秒,或从100公里每秒增加到(100+0.001)公里每秒,或者从2.9×105公里每秒增加到(2.9×105+0.001)公里每秒,都是无关紧要的。某一个物体在相同的时间内,获得相同的速度改变,则施于该物体上的力总是相同的。
这句话从相对论观点来看是对的吗?不!这一定律只对小的速度才有效。根据相对论,大到接近光速的速度定律是怎样的呢?如果速度大了,再要增加速度便需要极大的力。把100米每秒的速度增加1米每秒跟把近于光速的速度增加1米每秒,所需的力决不是一样的。速度愈接近光速,要增加它就愈难。当速度等于光速时,那么再要增加它已经是不可能的了。于是,由相对论引起的这种改变便不足为奇了。光速是所有速度的最高限度,一个有限的力,不管它多么大,总不能把速度增加到超过这个限度。一种更复杂的力学定律出现了,它代替了联结力和速度改变的旧的力学定律。从我们的新观点看来,经典力学是简单的,因为在差不多所有的观察中,我们所遇到的都是远较光速为小的速度。
静止的物体具有一定的质量,称为静止质量。我们在力学中知道,任何一个物体对于改变它运动的外力都要抵抗,质量愈大,抗力愈大,质量愈小,抗力也愈小。但是在相对论中却不仅如此。一个物体不仅由于静止质量较大而具有较大的阻止这种改变的抗力,而且如果速度愈大则抗力也愈大。在经典力学中,一个既定物体的抗力总是不变的,它仅由物体的质量来决定。在相对论中它不仅与静止质量有关并且与速度也有关,当速度接近光速时,抗力便成为无限大。
刚才所指出的结果使我们能够用实验来检验这个理论。接近光速的炮弹,它对外力的抵抗,是和理论所预料的一样吗?由于相对论在这一方面的叙述具有定量的性质,所以假如我们能实现速度接近光速的炮弹,我们就可以证实或推翻这个理论。
事实上,我们在自然界中确实可以找到具有这种速度的抛射体。放射性物质的原子,例如镭的原子,其作用等于大炮,能发射极大速度的射弹。我们不必详细叙述而只引用近代物理学和化学中的一个重要的观点。宇宙中所有的物质都是由为数不多的几种基本粒子组成的,犹如在一个城市中有大小不同、结构不同和建筑方法不同的建筑物,但是从小屋到摩天大楼都是用很少数的几类砖建成的。同样,我们的物质世界中所有的已知化学元素,从最轻的氢起到最重的钢止,都是由同样几种基本粒子构成的。最重的元素,或最复杂的建筑,是不巩固的,它们会分裂,或者按我们的说法,它们是具有放射性的。某些构成放射性物质的砖头,即基本粒子,有时会以接近光速的速度抛射出来。根据现在已被大量实验确认的见解,元素的原子,例如镭的原子,具有非常复杂的结构,而放射性蜕变只是证明原子是由比较简单的砖头,即基本粒子构成的现象中的一种。
利用巧妙而复杂的实验,我们可以发现这些粒子如何抵抗外力的作用。实验表明,这些粒子所产生的抗力与速度有关,恰如相对论所预见的一样。在许多其他的例子中,也可以发现抗力与速度有关,相对论与实验是完全相符的。这里我们又一次看到科学的创造性工作的重要特色,即先由理论预言某些论据,然后由实验来确认它。
这个结果暗示着一个更为重要的推广。一个静止的物体有质量,但没有动能(就是运动的能量)。一个运动的物体既有质量又有动能,它比静止的物体更强烈地抵抗速度的改变,运动物体的动能好像增加了它的抵抗作用。假如两个物体有同样的静止质量,则有较大动能的一个,对于外力作用的抗力也较强。
设想一个装着球的箱,箱与球在我们的坐标系中都是静止的。要使它运动,要增加它的速度,都需要力。假如球在箱中很快地、像气体的分子一样,以接近光速的平均速度朝各个方向运动,那么用相同的力在相同的时间间隔内是否能产生相同的速度的增加呢?现在必须用更大的力,因为球的动能的增加,加强了箱的抵抗力。能,至少是动能,它阻止运动的作用和有重力的质量所起的作用是一样的。这对于所有各种能来说也都是对的吗?
相对论从它的基本假设出发,对这个问题推论出一个明白而确切的答案,而且是一个定量性质的答案:所有的能都会抵抗运动的改变;所有的能的作用都和物质的一样;一块铁在炽热时称起来比冷却时要重一些;从太阳发射出来的通过空间的辐射含有能,因此也有质量;太阳与所有发出辐射的星体,都由于发出辐射而失去质量。这些具有普遍性的结论是相对论的一个重要的成就,而且与所有经过考验的论据都相符合。
经典物理学介绍了两种物质,即质与能。第一种有重力,而第二种是没有重力的。在经典物理学中我们有两个守恒定律,一个是对于质的,另一个是对于能的。我们已经问过,现代物理学是否还保持着两种物质和两个守恒定律的观点。答案是:否。根据相对论,在质量与能之间没有重要的区别。能具有质量而质量代表着能量。现在只用一个守恒定律,即质量-能量守恒定律,而不用两个守恒定律了。这种新的观点在物理学的进一步发展中已证明是很成功的。
能是具有质量而质量又代表能量的这一论据,在过去为什么一直没有被人注意到呢?一块热的铁称起来是不是会比一块冷铁重一些呢?现在对于这个问题的答案是“是的”,而过去(见“热是物质吗”一节)的答案是“不是的”。从那里开始到现在为止所讲的两个答案之间的一切内容,自然还不足以解决这个矛盾。
我们在这里所遇到的困难和前面所遇到的困难是属于同一种性质的。相对论所预言的质量的变化小到不能测量的程度,甚至最灵敏的天平也不能直接测量出来。要证明能不是没有重力,可以用许多可靠的,但是间接的方法来实现。
直接证据之所以缺乏,是因为物质与能之间的相互转换的兑换率太小了。能和质量的比较,犹如贬值的货币和高价值的货币相比较。举一个例子就可以把它弄清楚。能够把3万吨水变为蒸汽的热量称起来只有1克重。能之所以一直被认为是没有重力的,无非是因为它的质量太小了。
旧的能与物质之间的关系是相对论的第二个祭品,第一个祭品是传播光波的介质。
相对论的影响远远超过了由此而兴起相对论的那个问题的范围。它扫除了场论的许多困难和矛盾;它建立了更普遍的力学定律;它用一个守恒定律来代替两个守恒定律;它改变了我们旧的绝对时间的概念。它的有效性不止限于物理学的范围之内,它已成为适用于一切自然现象的普遍框架。
时-空连续区
“法国革命于1789年7月14日在巴黎起事”,这句话说出了一个事件的空间和时间。对于一个初次听到这句话并不懂“巴黎”是什么意思的人,你可以告诉他:这是位于我们地球上东经2度和北纬49度的一个城市。用这两个数就能够确定这个事件发生的地点,而“1789年7月14日”则是发生事件的时间。在物理学中准确地表征一个事件发生的地点与时间比历史更为重要,因为这些数据是定量描述的根本。
为简单起见,我们在前面只考察了直线运动,我们的坐标系是一根有起点而无终点的坚硬的杆,我们暂且保留这个限制。我们在杆上取不同的点,它们的位置都只能够用一个数来表征,即应用点的坐标。说一个点的坐标是7.586米,就是说,它与杆的起点的距离为7.586米。反过来说,假如有人给我一个任意的数和一个量度单位,我总能够在杆上找到和这个数相对应的一点。我们可以说,杆上一个确定的点与一个数对应,一个确定的数则与一个点相对应。数学家将此表述为杆上所有的点构成了一个一维连续区。在杆上每一给定点的无论怎样近的地方都有一个点,我们在杆上可以用许多任意小的距离来把两个相距遥远的点连接起来。连接相距遥远的两点的各个距离可以任意地小,这便是连续区的特征。
再举一个例。假设有一个平面,你若喜欢举一件具体的东西作例,可改设有一个长方形的桌面(图58)。桌面上一点的位置可以用两个数来表征,而不像前面那样只用一个数来表征。这两个数便是这个点与桌面两条相互垂直边的距离。和平面上每一点相对应的不是一个数而是一对数,一个确定的点都有一对数跟它相对应。换句话说,平面是一个二维连续区。在平面上每一给定点的无论怎样近的地方都有别的点。两个相距遥远的点可以用一根曲线分成的任意小的距离把它们连接起来。这样,用任意小的距离连接两个相距遥远的点,每一点都可以用两个数来代表,这就是二维连续区的特征。
再举一个例,设想你要把自己的房间看作是你的坐标系,也就是你想借助于房间的墙来描述所有的位置。如果一盏灯是静止不动的,这盏灯的位置可以用3个数来描写(图59),两个数决定它与两个相互垂直的墙的距离,第三个数决定它与天花板或地板的距离。3个确定的数与空间的每一点相对应,空间中一个确定的点与每三个数相对应。这可以用下面的一句话来表达,我们的空间是一个三维连续区。在空间每一给定点的非常近的地方还存在着许多点,连接相距遥远的点的距离可以任意地小,而每一个点都用3个数来代表,这就是三维连续区的特征。
但是上面所讲的简直都不是在谈物理学。现在再回到物理学上来,我们必须考察物质粒子的运动。要观察并预言自然界中的现象,我们不仅应考察物理现象发生的位置,还要考察它发生的时间。我们再来举一个很简单的实例。
一个小石子,现在把它看作是一个粒子,从塔上落下来,假设塔高80米。从伽利略时代起,我们就能预言石子开始落下以后在任何时刻的坐标,下面是说明石子在0、1、2、3、4秒时位置的“时间表”。
时间(秒)01234
离地高度(米)807560350
在我们的“时间表”中记载着5个事件,每一个事件用2个数即每一个事件的时间和空间坐标来表示。第一个事件是石子在0秒时从离地80米处的下落。第二个事件是石子与我们坚硬的杆(塔)在离地75米处相重合,这发生在经过1秒之后。最后的事件是石子与地面相遇。
我们可以把这个“时间表”中所得到的知识用不同的方式来表示。比如把“时间表”中的5对数字用平面上的5个点来代表。首先确定一种比例尺,例如,像图60那样,一段线表示20米,而另一段线表示1秒。
然后画两根垂直的线,把水平线作为时间轴,竖直线作为空间轴。我们立刻就看到“时间表”可以用时-空平面中的5个点来表示(图61)。
离空间轴的距离代表“时间表”第一行中所指出的时间坐标,而离时间轴的距离则代表空间坐标。
用“时间表”来表示和用平面上的点来表示,方式虽然不同,但效果完全一样。每一种方式都可以根据另一种作出来。在这两种表示方式之中应选择哪一种,只不过是随人所好而已,因为实际上它们是等效的。
让我们再前进一步。设想有一个更好的“时间表”,它不是记出每1秒的位置,而是记出每1/100秒,或1/1000秒的位置。这样,在我们的时-空平面上便会有许多点。最后,如果对每一时刻记出位置,或者如数学家所说,把空间坐标表示为时间的函数,那么这些点的集合便成为一根连续的线。这样,像图62那样,这个图所代表的不是过去那种零碎的知识,而是石子运动的全部的知识。
沿着坚硬的杆(塔)的运动,也就是在一维空间中的运动,在这里是用二维时-空连续区中的一根曲线来代表的。这个时-空连续区中的每一点都有一对数字和它对应,一个数表示时间坐标,另一个数表示空间坐标。反过来说,在我们的时-空连续区中一个确定的点,与表征一个事件的某一对数字相对应。相邻的两个点代表在稍微不同的两个位置上以及在稍微不同的两个时刻分为两次发生的两个事件。
你或许会用下面的理由来反对我们的图示法:把一个时间单位用一段线来代表,把它机械地和由两个一维连续区构成的一个二维连续区的空间联系起来,是毫无意义的。但是假如你要反对这个办法,那么你便要同样有力地反对许多图示,例如表示去年夏季纽约城的温度变化的图,表示近几年来生活费用变化的图,因为这些例子中所用的都是同一种方法。在温度图中,一维的温度连续区与一维的时间连续区结合成一个二维的温度-时间连续区。
让我们再回到从80米高塔上落下来的粒子问题上。我们把运动画成图是一种很有用的办法,因为它表征着在任何时刻粒子的位置。知道了粒子是怎样运动的,我们就能再一次把它的运动画出图来。我们可以画成两种不同的方式。
我们记得一种是粒子在一维空间中随时间而变化的图,我们把运动画成在一维连续区中连续发生的一系列事件。我们不曾把时间和空间结合起来,我们所用的是动图,在这个图中位置随时间而变化。
但是我们可以把同样的运动用不同的方式加以描画,我们可以把运动考虑为二维时-空连续区中的曲线而构成一幅静图。现在运动已经看成由某种东西来代表,它是存在于二维时-空连续区中的某种东西,而不是在一维空间连续区中变化的某种东西了。
这两个图是完全等效的,爱用这一种或那一种只不过是随人们的习惯与兴趣而已。
以上关于运动的这两种图示法所说的一切都没有对相对论说明什么问题。两种图示法都可以随便使用,不过经典物理学比较喜欢用动图,因为动图把运动描写成为空间中所发生的事件,而不是作为存在于时-空中的某种东西。但是相对论改变了这个观点,它明确地赞成静图,它发现把运动表示为存在于时-空中的某种东西的这种图示法,是一幅描画实在的更方便、客观的图。我们还要解答一个问题:为什么这两个图从经典物理学的观点看来是等效的,而从相对论的观点看来,却不是等效的呢?
要明了这个问题的答案,必须再讨论相互作匀速直线运动的两个坐标系。
根据经典物理学,在两个相互作匀速直线运动的坐标系中的观察者对于同一个事件,将选用各自不同的空间坐标,但只用同一个时间坐标。所以在上述例子中,石子和地面接触是用我们所选定的坐标系中的时间坐标“4”和空间坐标“0”来表征的。根据经典力学,相对于我们选定的坐标系作匀速直线运动的一个观察者也会认为石子在4秒之后碰到地面。但是这个观察者却会把距离与他自己的坐标系相联系,而且一般说来,会把不同的空间坐标和石子碰地的事件连结起来,不过他所用的时间坐标跟所有相互作匀速直线运动的其他观察者所用的都是相同的。经典物理学只知道对所有的观察者都是同样流逝的“绝对的”时间。对于每一个坐标系,二维连续区都可以分解为两个一维连续区:时间与空间。由于时间的“绝对的”性质,在经典物理学中把运动的图从“静图”过渡到“动图”便具有一种客观的意义了。
但是我们已经确信经典转换不能普遍地应用于物理学中。从实用的观点看来,它还可以适用于小的速度,但是决不适用于解决根本的物理问题。
根据相对论,石子跟他面相碰的时间在所有的观察者看来不会是一样的。在两个不同的坐标系中,时间坐标和空间坐标都是不相同的,并且如果两个坐标系的相对速度接近光速,则时间坐标的变化将十分明显。二维连续区不能像在经典物理学中那样分解为两个一维连续区。在决定另一个坐标系中的时-空坐标时,我们不能把空间和时间分开来考察。从相对论的观点看来,把二维连续区分解为两个一维连续区,似乎是一种没有客观意义的武断的方法。
刚才我们所讲的一切都不难把它们推广到非直线运动的情况中。事实上,要描述自然界中的现象必须用4个数而不是用2个数。用物体及其运动来表述的我们的外在空间具有3个维度,物体的位置是由3个数来表征的。一个事件的时刻是第四个数。4个确定的数对应于每一个事件,每个确定的事件都有4个数跟它相对应。因此,大量的事件构成一个四维连续区。这一点也没有什么神秘之处,上面这句话无论对经典物理学或相对论来说都是同样正确的。但是当我们考察两个相互作匀速直线运动的坐标系时就又会发现差异。倘若一个房间在运动,房间内、外的观察者要测定同一个事件的时-空坐标。经典物理学家们又会把这个四维连续区分解为三维空间和一维时间连续区。老派物理学家只考虑空间的转换,因为对他们来说,时间是绝对的。他们觉得把四维世界连续区分解为空间和时间是自然而方便的。但是从相对论的观点看来,时间和空间从一个坐标系过渡到另一个坐标系时都是要改变的,而洛伦兹转换就是考察事件的四维世界的四维时-空连续区的转换性质的。
所有的事件都可以描画成随时间变化而且投射在三维空间背景上的动图,但是也可以直接描画成投射在四维时-空连续区背景上的静图。从经典物理学的观点看来,这两个图,一个动的,一个静的,都是等效的。但是从相对论的观点看来,静图比较方便,而且更符合客观实际。
如果我们喜爱,甚至在相对论中,我们还是可以用动图的。但是我们必须记住,这样把时间和空间分开来,是没有客观意义的,因为时间不再是“绝对”的了。我们以后还是要用“动”的语言而不用“静”的语言,不过我们得时常记住它的局限性。
广义相对论
现在还有一个论点等待我们去澄清。有一个最基本的问题尚未解决:是不是存在着一个惯性系呢?我们对于自然界的定律,对于它们对洛伦兹转换的不变性,以及对于它们在所有互作匀速直线运动的惯性系中的有效性都已略有所知。我们有了定律,但是我们还不知道它们所参照的是哪一个框架。
为了使我们更加明白这个问题的困难,我们且访问一位经典物理学家,与他讨论几个简单的问题:
“惯性系是什么?”
“它是力学定律在其中行之有效的一个坐标系。在这样的一个坐标系中,一个没有受外力作用的物体总是作匀速直线运动的。这种性质使我们能把惯性坐标系和其他任何坐标系区别开来。”
“但是所谓没有力作用于物体上,究竟是什么意思呢?”
“这只是说物体在惯性坐标系中作匀速直线运动。”
于是我们又可以再问一次:“惯性坐标系是什么?”但是由于很少有希望得到一个与上不同的答案,我们不如把问题改变一下,或许可以得到一些具体的知识。
“一个严密地与地球相结合的坐标系是一个惯性坐标系吗?”
“不是,因为由于地球的转动,力学定律在地球上不是严格地有效的。在许多问题上,我们可以把严密地结合于太阳的坐标系看作是一个惯性系,但是我们有时也说到太阳的转动,可见严密地结合于太阳的坐标系,严格地说也不是一个惯性坐标系。”
“那末,具体地说,什么才是你说的惯性坐标系呢?而且怎样选择它的运动状态呢?”
“这只是一个有用的虚构,我也想不到怎样去实现它。只要我能够远离一切物体,而且使我不受任何外力的影响,我的坐标系就会是惯性的。”
“但是你所谓免除所有的外界影响的坐标系又是什么意思呢?”
“我的意思是说那个坐标系是惯性的。”于是我们又回到原来的那个问题上来了。
我们的交谈显示出经典物理学中一个严重的困难。我们有定律,但是不知它们归属于哪一个框架,因此整个物理学都好像是筑在沙堆上一样。
我们可以从另一种不同的观点来研究这个困难。设想在全宇宙中只有一个物体,它构成了我们的坐标系。这个物体开始转动。根据经典力学,转动的物体的物理定律跟不转动的物体的物理定律是不同的。假使惯性原理在一种情况中是可用的,那么在另一种情况中便是不能用的了。但是这些话听起来很令人怀疑。假使整个宇宙中只有一个物体,我们难道能够考察它的运动吗?所谓一个物体在运动,总是说它相对于另一个物体的位置改变,因此,说成独一无二的物体的运动是与常识不符的。经典物理学在这一点上是和常识很矛盾的。牛顿的说法是:假使惯性定律是有效的,那末这个坐标系或者是静止,或者是作匀速直线运动。如果惯性定律无效,那末物体的运动是非匀速运动。这样一来,我们对运动或静止的判断,便要依靠所有的物理定律能否在既定的一个坐标系里面应用来决定了。
取定两个物体,例如太阳和地球。我们所观察到的运动也是相对的,既可以用关联于地球的坐标系也可以用关联于太阳的坐标系来描述它。根据这个观点看来,哥白尼的伟大成就在于把坐标系从地球转换到太阳上去。但是因为运动是相对的,任何参考系都可以用,似乎没有什么理由认为一个坐标系会比另外一个好些。
物理学再一次干涉和改变我们的常识。关联于太阳的坐标系比关联于地球的坐标系更像一个惯性系,物理定律在哥白尼的坐标系中用起来比在托勒密的坐标系中要好得多。只有在物理学的观点上才能对哥白尼发现的伟大意义有所体会,它说明了用严密地连结于太阳的坐标系来描写行星的运动有很大的好处。
在经典物理学中,不存在绝对的直线匀速运动。如果两个坐标系相互作匀速直线运动,那么说“这个坐标系是静止的,而另一个是运动的”是毫无意义的。但是如果两个坐标系相互作非匀速直线运动,那么完全有理由说:“这个物体在运动,而另一个是静止的(或者在匀速直线地运动)。”绝对的运动在这里有很确切的意义。在这一点上,常识和经典物理学之间隔着一条鸿沟。前面所说的惯性系的困难是和绝对运动的困难密切相关的。绝对运动之所以成为可能,只是由于自然定律能在其中有效的惯性系统的观念而产生的。
这些困难好像是无法避免的,正像任何物理学理论都无法避免它们一样。困难的根源在于自然定律只能应用在某一种特殊的坐标系即惯性系中。解决这个困难有无可能,全看对于下面的问题回答得怎样。我们是否能这样来表达物理学中的定律,使它们在所有的坐标系中,即不单是在相互作匀速直线运动的系统中,而且在相互作任何任意运动的坐标系中都是有效的呢?如果这是可以做到的,那么困难便会得到解决。那时我们便可以把自然定律应用到任何一个坐标系中去。于是,在科学早期的托勒密和哥白尼的观点之间的激烈斗争,也就会变成毫无意义了。我们应用任何一个坐标系都一样。“太阳静止,地球在运动”,或“太阳在运动,地球静止”,这两句话,便只是关于两个不同坐标系的两种不同惯语而已。
我们是否能够建立起一种在所有坐标系中都有效的名符其实的相对论物理学呢?或者说,能否建立只有相对运动而没有绝对运动的一种物理学呢?事实上,这是可能的!
关于怎样去建立这种新物理学,我们至少已经有了一个启发,尽管这个启发是那样软弱无力。真正的相对论物理学必须能应用于一切的坐标系中,因此也当然能应用于惯性坐标系这类特例中。我们早已知道能应用于惯性坐标系的许多定律。适用于一切坐标系的新的普遍定律,必须在惯性系的特例中还原为旧的已知定律。
建立能应用于一切坐标系的物理学定律的问题,已经被所谓的广义相对论解决了。先前所讲的相对论,只能应用于惯性系,被称为狭义相对论。这两种相对论自然不能相互矛盾,因为我们必须把狭义相对论中的旧定律包含在一种惯性系的普通定律中。但是正由于物理学定律以往只建立在惟一的惯性坐标系上,所以现在它将成为一种特殊的极限情况,因为在广义相对论中,一切相对作任意运动的坐标系都是许可的。
这就是广义相对论的预言。但是要描述这个预言是怎样作出来的,我们必须说得比以前更含糊些。科学发展中所产生的新困难迫使我们的理论愈来愈抽象。许多预料不到的事情仍然等待着我们去发现,而我们的最终目的总是要更好地了解实在。在结合理论和观察的逻辑锁链中又增加了新的环圈。要清除由理论通到实验的道路上一切不必要和牵强的假设,要使理论包括范围更加广阔的论据,我们必须使这个锁链愈来愈长。我们的假设变得愈简单、愈根本,则我们所用的数学推理工具便愈艰深,而由理论到观察的道路也愈长、愈艰难、愈复杂。虽然这些话听来好像不通,但我们一定可以说,新物理学比较旧物理学更简单,因而也似乎更困难而且更艰深。我们的外在世界的图景愈简单,那么它所包括的论据愈多,它愈能在我们的脑海中鲜明地反映出宇宙的融和与一致。
我们的新观念是很简单的:建立一种在所有坐标系中都有效的物理学。为了满足这个观念,我们不能不使物理学的形式更复杂,并且不能不使用一些我们以前在物理学中没有用过的数学工具。在这里我们只指出这个预言的应验和两个主要问题(引力及几何学)的关系。
在升降机外和升降机内
惯性定律标志着物理学上的第一个大进步,事实上是物理学的真正开端。它是由考虑一个既没有摩擦又没有任何外力作用而永远运动的物体的理想实验而得来的。从这个例子以及后来许多旁的例子中,我们认识到用思维来创造理想实验的重要性。现在我们又要讨论到另一些理想实验。虽然这些理想实验听来似乎很荒唐,可是却能帮助我们用简单的方法了解相对论。
前面讲过一个作匀速直线运动的房间的理想实验。这里我们要变换一下,讲一个下降的升降机的理想实验。
设想有一个大升降机在摩天楼的顶上,而这个理想的摩天楼比任何真实的摩天楼还要高得多。突然,升降机的钢缆断了,于是升降机就毫无拘束地向地面降落。在降落过程中,里面的观察者正在做实验。描写这些实验的时候,我们不必顾虑空气的阻力或摩擦力,因为在理想实验中,我们可以不考虑它的存在。一个观察者从袋里拿出一块手帕和一只表,然后让它们从手中掉下来。这两个物体会怎样呢?在升降机外面的观察者从升降机的窗子望进去,发现手帕和表以同样的加速度向地面落下。我们记得,一个落体的加速度与它的质量无关,而这个情况正揭示了引力质量和惯性质量的相等。我们还记得,从经典力学观点看来,这两种质量的相等完全是偶然的,它在经典力学中毫无作用。可是在这里,这两种质量的相等是很重要的,它反映了一切落体都有相同的加速度,并且构成了我们全部论证的基础。
我们返回来谈那下落的手帕和表。在升降机外面的观察者看来,这两个物体都是以同样的加速度降落,而升降机连同它的四壁、地板、天花板也都以同样的加速度降落,因此两个物体与地板之间的距离不会改变。对于升降机里面的观察者来说,这两个物体就停在他松手让它们掉下的那个地方。里面的观察者可以不管引力场,因为引力场的源在他的坐标系之外。他发现在升降机之内没有任何力作用于这两个物体,因此它们是静止的,正好像它们是在一个惯性坐标系中一样。奇怪的事情在升降机中发生了!假使这个观察者把一个物体朝任何方向(例如朝上或朝下)推动,在它没有碰到升降机的天花板或地板之前,它就会永远匀速直线地运动。简单说来,升降机里面的观察者认为经典力学的定律是有效的。所有物体的行为都被惯性定律预料到了。这个新的严密地连结于自由降落的升降机的坐标系跟惯性坐标系之间只有一个方面不同。在惯性坐标系中,一个没有受任何力作用的运动物体永远会匀速直线地运动。经典物理学表述惯性坐标系是无论在空间上与时间上都不加限制的。可是在这个升降机中的观察者的例子中就不同了。他的坐标系的惯性性质,却是限制在一定的空间与时间中的。迟早这个直线匀速地运动的物体要碰到升降机的壁,而直线匀速运动就受到破坏。而且迟早这整个升降机会碰到地面,而连里面的观察者和他的实验都要受到破坏。这个坐标系只是一个实在的惯性坐标系的“袖珍版”罢了。
这个坐标系的局部性是很重要的。如果这个想象中的升降机的一端在北极,一端在赤道,而手帕放在北极,表放在赤道,则在外面的观察者看来,这两个物体的加速度不会相等,它们不会是相对地静止的。我们的全部推论便都瓦解了!升降机的尺度必须有一定的限制,然后才能认为一切物体的加速度相对于升降机外面的观察者都相等。
虽然有了这种限制,里面的观察者还是认为这个坐标系具有惯性的性质。我们至少能同意一个所有的物理学定律在它里面都能应用的坐标系,不过在时间和空间上受限制而已。假如我们再想象另一个坐标系,即另一个对自由降落的升降机作直线匀速运动的升降机,那么这两个坐标系都会是局部惯性的。所有的定律在这两个坐标系中都完全一样。从一个坐标系过渡到另一个坐标系是用洛伦兹变换来表示的。
我们试看升降机里面和外面的这两个观察者用什么方法来描述升降机里面所发生的事情。
外面的观察者看到升降机的运动和机内一切物体的运动,发现它们与牛顿引力定律是一致的。在他看来,由于地球引力场的作用,运动不是直线匀速的,而是加速的。
可是在升降机内出生和成长起来的一代物理学家,却会产生完全不同的想法。他们确信自己保有一个惯性系统,而把所有的自然定律都关联到他们的升降机,而且很有信心地说,在他们的坐标系中,定律都有一种特别简单的形式。他们会很自然地认为他们的升降机是静止的,而他们的坐标系是惯性的。
要调解外面的观察者和里面的观察者的分歧意见是不可能的。他们每人都有权利把一切现象联系到自己的坐标系上去,两者都可以把各自看到的现象描述得完全一致。
从这个例子中,我们可以看到甚至在两个并非作直线匀速运动的坐标系中的物理现象要作出一致的描述也是可能的。但是要作这样的描写,我们必须把引力考虑在内,它构成从一个坐标系过渡到另一个坐标系的“桥梁”。外面的观察者认为存在引力场,里面的观察者却认为不存在。外面的观察者认为存在着升降机在引力场中的加速运动,里面的观察者却认为升降机是静止的,而且引力场也是不存在的。但是引力场这个“桥梁”,使两个坐标系中的描述成为可能,这个桥梁架设在一个很重要的礅柱之上:引力质量和惯性质量的相等。如果没有这个经典力学所未曾注意到的线索,我们目前的论证就会完全失败。
现在再来讲一个稍微不同的理想实验。假设有一个惯性坐标系,在它里面,惯性定律是有效的。我们已经描述过静止在这样的一个惯性坐标系中的一个升降机中所发生的事。现在我们把图改变一下,有人在外面把一根缆索缚在升降机上,再以一个不变的力照图上的方向拉(图63)。至于用什么方法拉是无关重要的。因为力学定律在这个坐标系中是有效的,这整个的升降机以不变的加速度朝着一个方向运动。我们再听一听升降机内外的观察者怎样解释在升降机里面所发生的现象。
外面的观察者:我的坐标系是一个惯性坐标系,升降机以不变的加速度运动是因为有一个不变的力在作用。里面的观察者是在作绝对运动,力学定律对于他是无效的。他看不出不受外力作用的物体是静止的。如果释放一个物体,那么它立刻会碰在升降机的地板上,因为地板是朝着物体向上运动的。表和手帕也完全一样。我觉得很奇怪,升降机内的观察者的脚必须永远贴在“地板”上,因为当他跳起来的时候,地板又立刻会重新碰到他。
里面的观察者:我不知道有什么理由可以相信我的升降机在作绝对运动。我同意,跟我的升降机紧密地联系着的坐标系实在不是惯性的,但是我不相信它与绝对运动有关。我的表、手帕以及一切物体的下降,是因为整个升降机都是在引力场中的缘故。我所观察到的运动和人们在地球上所看到的完全一样,人们很简单地用引力场的作用来解释地球上的物体下落的运动,我也是如此。
这两种描述(一种是由外面的观察者所作,另一种是由里面的观察者所作)都很能自圆其说,因而我们不可能决定哪一个是正确的。我们可以采用其中任何一种来描写升降机中的现象:或是依照外面的观察者所主张的,升降机作非匀速直线运动而没有引力场,或者依照里面的观察者所主张的,升降机静止,却有引力场。
外面的观察者可以认定升降机是在作“绝对的”非匀速直线运动,但是一个被作用有引力场的假定所驳倒的运动决不能看作是一个绝对运动。
也许我们能从这两种不同描述中的含糊之处找到一条出路以决定哪一种对,哪一种不对。设想有一束光穿过一个侧面窗口水平地射进升降机内,并且在极短时间之后射到对面的墙上。我们再看这两个观察者怎样预测光的路径。
外面的观察者由于相信升降机在作加速运动,他断定:光线射进窗内之后是水平地以不变的速度沿着直线向对面的墙上射的。但是升降机正在朝上运动,而在光朝墙而射的时间内,升降机已经改变了位置。因此光线所射到的点不会与入口的点恰恰相对,而会稍微低一点(图64)。这个差异是很小的,可总是有的,
于是相对升降机而言,光线不是沿着直线,而是沿着稍微弯曲的曲线行进的。
产生差异的原因是当光线经过升降机内部时,升降机本身已移动了一段距离。
里面的观察者由于相信升降机内的一切物体都受到引力场的作用,他说:升降机的加速运动是没有的,只有引力场的作用。光束是没有质量的,因此不会受到引力场的影响。假如它是朝着水平的方向射去,它就会射到与人口的点恰恰相对的一点上。
从这个讨论看起来,似乎有可能在这两种相互矛盾的观点中选择一种,因为这两个观察者对于同一个现象的解释是不同的。假使刚才所指出的两种解释都没有什么不合理的地方,那么我们前面的全部论证都会受到破坏,我们就不能用两个并立的方法,一种用引力场,另一种不用引力场,来描写一切现象。
但是幸而里面的观察者的推理中有一个严重的错误,才挽救了我们前面的结论。他说:“光束是没有质量的,因此不会受到引力场的影响。”这是不正确的!光束具有能,而能具有惯性质量,但是任何惯性质量都受引力场的吸引,因为惯性质量和重力质量是相等的。一束光在引力场中会弯曲,正如以等于光速的速度水平地抛出的物体的路线会弯曲一样。假如里面的观察者作出正确的推理,他把光线在引力场中受弯曲的事实考虑进去,那么他的结果会与外面的观察者的结果完全一致。
地球的引力场对于使光线弯曲的力自然是太弱了,不能用实验直接证明光线在地球引力场中的弯曲。但是在日蚀时所完成的著名实验,则间接而确实地证明了引力场对光线方向的影响。
从这些例子中可以看出,要建立一种相对论物理学是很有希望的。但是要这样做,我们必须首先对付引力问题。
在升降机的例子中我们已经看到两种描述的并立性。可以假定非匀速运动,也可以不假定。我们可以用引力场来从这些例子中排斥“绝对的”运动。但是那样一来,非匀速运动就一点也不绝对了。引力场是完全能够把它排除掉的。
我们可以把绝对运动和惯性坐标系的鬼魂从物理学中赶出去,从而建立一个新的相对论物理学。我们的理想实验指出了广义相对论的问题怎样和引力问题有密切的关系,并且指出了为什么引力质量和惯性质量的相等对这一关系会是这样重要。很明显,广义相对论中引力问题的解和牛顿的解一定是不同的。引力定律,正像所有的自然定律一样,必须对所有可能的坐标系都能成立,而牛顿提出的经典力学定律则只有在惯性坐标系中才是有效的。
几何学与实验
下面一个例子比下落的升降机例子还要奇特。我们必须接触到一个新的问题,即广义相对论与几何学之间的关系。我们先来描写一个另外的世界,在那里面生存着二维的生物,而不是像我们的世界里那样生存着三维的生物。电影已经使我们习惯于感受表演于二维银幕上的二维生物。我们现在设想银幕上的这些影子(出场人物)是实际存在的,他们有思维的能力,他们能创造他们自己的科学,二维的银幕就是他们的几何空间。这些生物不能具体地想象一个三维空间,正如我们不能想象一个四维世界一样。他们能够折转一根直线,知道圆是什么,但是不能做一个球,因为这就等于丢弃了他们的二维银幕。我们的处境也相类似,我们能够把线和面折转和弯曲过来,但是我们很难想象一个转折或弯曲的三维空间。
这些“影子”通过生活、思维和实验,最后可以精通二维欧几里得几何学的知识。于是他们能证明三角形的内角之和为180度。他们能够作出有公共圆心的一大一小的两个圆。他们会发现,两个这样的圆的圆周之比等于它们的半径之比,这种结果正是欧几里得几何学的特征。如果银幕无限大,这些“影子”会发现,若笔直往前旅行,他们永远也不会回到起点。
现在我们想象这些二维生物的环境改变了。我们再想象有人从外面,即从“第三维”,把他们从银幕上迁移到具有很大半径的圆球上。假如这些影子比起全部球面来是极小的,假如他们无法作遥远的通信,又不能走动得很远,则他们不会感觉到有什么变化。小三角形的内角之和仍是180度。具有共同圆心的两个小圆,其半径之比仍等于其周长之比。他们沿着直线旅行,还是不会回到他们的起点。
但是假设这些影子慢慢发展起他们的理论和技术知识。假使他们有了交通工具,能够很快地通过巨大的距离。他们便会发现,笔直往前旅行,最后还是会回到他们的起点。“笔直往前”就是沿着圆球的大圆走去。他们也会发现,具有公共中心的两个圆,假如一根半径很小,另一根很大,则其周长之比不等于其半径之比。
假如我们的二维生物是保守的,假如他们在过去几代所学的都是欧几里得几何学,那时候他们不能往远处旅行,那时候这种几何学跟观察到的情况是相符的,那么,尽管他们的测量有明显的误差,他们必然要尽可能去维护这种几何学。他们力求让物理学来挑起这些矛盾的重担。他们想寻找一些物理学上的理由,例如温度之差来解释线的变形,说这种变形使测量结果与欧几里得几何学不符了。但是他们迟早总会发现,有一种更合理、更确切的方法来描述这些现象。他们最后会懂得他们的世界是有限的,还有着与他们所学的有很大区别的几何学原理。他们即使没有能力把这些原理想象出来,但会知道,他们的世界是一个圆球上的二维表面。他们将很快地去学新的几何学原理,这些原理虽与欧几里得的不同,但是对他们的二维世界仍然是一致的,合乎逻辑的。下一代的二维生物便学到圆球的几何学知识,他们会觉得旧的欧几里得几何学似乎是更复杂和牵强,因为它与观察到的情况不符。
我们再回到我们的世界中的三维生物上来。
说我们的三维空间具有欧几里得性,这是什么意思呢?这句话的意思是说所有欧几里得几何学理论上证明了的命题,都能够用实际的实验加以验证。我们能够利用坚硬的物体或光线作出符合于欧几里得几何学中理想形体的实际形体来。一把尺的边缘或一束光都相当于一条线。用很细的坚硬的杆所构成的三角形的内角之和等于180度。用两根很细的弹性金属线所构成的同心圆的半径之比等于其周长之比。欧几里得几何学用这个方式来解释以后,便成了物理学的一章,不过这是很简单的一章。
但是我们可以认为矛盾已经找到了:例如由杆(有许多理由都认为它们是坚硬的)构成的大三角形内角之和不再等于180度了。因为我们已经习惯于用坚硬的物体来具体表示欧几里得几何学的观念,那么我们也许要寻找一些物理的力来解释我们的杆的这种意料不到的变形。我们力求发现这种力的物理性质,以及它对其他现象的影响。要挽救欧几里得几何学,我们会归罪于实际形体的不坚硬,会归罪于实际形体与欧几里得几何学中的形体不完全相符。我们要设法寻找一种更好的物体,它表现得和欧几里得几何学所期望的完全一致。可是,假如我们不能把欧几里得几何学和物理学结合成一个简单一致的图景,那么我们必须放弃关于我们的空间是欧几里得性的观念,并且要将我们空间的几何性质作更普遍的假设以便寻求更确切的“实在”的图景。
这个必要性可以用一个理想实验加以说明,这个实验告诉我们,一个真正的相对论物理学不能建筑在欧几里得几何学的基础上。我们的论证要引用已经知道的惯性坐标系和狭义相对论的结果。
设想一个大圆盘,上面画着两个同心圆,一个很小,另一个非常大。圆盘很快地旋转。圆盘是相对于外面的观察者转动的,假设圆盘里面还有一个观察者。我们再假定外面的观察者的坐标系是惯性的。外面的观察者也可以在他的惯性坐标系中画出同样一大一小的两个圆,这两个圆在他的坐标系中是静止的,但与圆盘上的圆相重合。他的坐标系是惯性的,因此欧几里得几何学在他的坐标系中是有效的,他会发现两圆周之比等于其半径之比。但是在圆盘上的观察者又发现了什么呢?从经典物理学和狭义相对论的观点看来,他的坐标系是禁用的。但是假如我们想为物理学定律找出能适用于任何坐标系的新形式,那么我们必须以同样严肃的态度来对待圆盘上和圆盘外的观察者。现在我们是从外面来注视圆盘里面的观察者,看他如何靠测量去寻找旋转的盘上的周长与半径。他所用的小尺,与外面的观察者所用的是一样的。所谓“一样的”,是指实实在在一样的,就是说它是由外面的观察者交给里面的观察者的,或者说,它是在一个静止的坐标系中长度相同的两把尺中的一把。
里面的观察者在盘上开始测量小圆的半径与周长,他的结果一定会与外面的观察者的完全一样。圆盘围绕着它旋转的轴通过圆盘的中心,圆盘上接近于中心的那些部分的速度非常小。如果圆是足够小,那么我们完全可以放心地使用经典物理学而不必顾及狭义相对论。这就是说,对于里面的和外面的观察者来说尺的长度是一样的,因而对这两个观察者来说,两种测量的结果将是一样。现在盘上的观察者又来测量大圆的半径。放在半径上的尺相对于外面的观察者是在运动的。但是因为运动的方向跟尺垂直,这样尺不收缩,因而对两个观察者来说,它的长度是一样的。这样,对这两个观察者来说,三种测量结果都相同:两个半径和一个小圆的圆周。但是第四种测量则不然,两个观察者所测的大圆的周长是不相同的。放在圆周上的尺,朝着运动的方向,因此依照外面的观察者的观测,比起他的静止的尺来,现在它显得收缩了。外圆的速度较内圆的大得多,因而必须计及这种收缩。因此如果应用狭义相对论的结果,我们的结论应该是这样:两个测量者所测量的大圆的周长一定是不同的。由于两个观察者所测量的四种长度中只有一种是互不相同,因此里面的观察者不能和外面的观察者一样认为两半径之比等于两圆周之比。这就是说,在盘上的观察者不可能在他的坐标系中确认欧几里得几何学的有效性。

发表评论